An Intelligent Offline Handwriting Recognition System Using Evolutionary Neural Learning Algorithm and Rule Based Over Segmented Data Points
نویسندگان
چکیده
In this paper we propose a novel technique of using a hybrid evolutionary method, which uses a combination of genetic algorithm and matrix based solution methods such as QR factorization. The training of the model is based on a layer based hierarchical structure for the architecture and the weights for the Artificial Neural Network classifier. The architecture for the classifier is found using a binary search type procedure. The hierarchical structured algorithm (EALS-BT) is also a hybrid, because it combines the Genetic Algorithm based method with the Matrix based solution method for finding weights. A heuristic segmentation algorithm is initially used to over segment each word. Then the segmentation points are passed through the rule-based module to discard the incorrect segmentation points and include any missing segmentation points. Following the segmentation the contour is extracted between two correct segmentation points. The contour is passed through the feature extraction module that extracts the angular features, after which the EALS-BT algorithm finds the architecture and the weights for the classifier network. These recognized characters are grouped into words and passed to a variable length lexicon that retrieves words that have the highest confidence value. ACM Classification: I.4 (Image Processing and Computer Vision)
منابع مشابه
An Evolutionary Neural Learning Algorithm for Offline Cursive Handwriting Words with Hamming Network Lexicon
Original Word Image Rule Based Segmentation Character Resizing Recognition of Character using an ANN (trained with EALTS-BT) Lexicon Analyser Input Feature Extraction Output In this paper we incorporate a hybrid evolutionary method, which uses a combination of genetic algorithm and matrix based solution method such as QR factorization. A heuristic segmentation algorithm is initially used to ove...
متن کاملOffline Arabic Handwriting Recognition with Multidimensional Recurrent Neural Networks
Offline handwriting recognition is usually performed by first extracting a sequence of features from the image, then using either a hidden Markov model (HMM) [9] or an HMM / neural network hybrid [10] to transcribe the features. However a system trained directly on pixel data has several potential advantages. One is that defining input features suitable for an HMM requires considerable time and...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملOff-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Research and Practice in Information Technology
دوره 37 شماره
صفحات -
تاریخ انتشار 2005